Package: mwshiny (via r-universe)

September 11, 2024
Type Package
Title 'Shiny' for Multiple Windows
Version 2.1.1
Date 2020-06-08
Maintainer Hannah De los Santos <hdelossantos653@gmail.com>

Description A simple function, mwsApp(), that runs a 'shiny' app
spanning multiple, connected windows. This uses all standard
'shiny' conventions, and depends only on the 'shiny' package.

License MIT + file LICENSE
Encoding UTF-8

LazyData true

Depends shiny (>= 1.2.0)
Imports htmltools (>= 0.3.6)

Suggests knitr, rmarkdown, ggplot2 (>= 3.1.0), visNetwork (>=2.0.5),
htmlwidgets (>= 1.3), datasets

VignetteBuilder knitr

RoxygenNote 6.1.1

Repository https://delosh653.r-universe.dev

RemoteUrl https://github.com/delosh653/mwshiny
RemoteRef HEAD

RemoteSha c70d7809352bd1a351bcdfce8a691fef31d7141d

Contents

Index

mwsApp

mwSApp

Runs Shiny app in multiple specified windows.

Description

Runs Shiny app in multiple specified windows.

Usage

mwsApp(ui_win =

Arguments

ui_win

serv_calc

serv_out

Value

Shiny app object (i

Examples

list(), serv_calc = list(), serv_out = list())

named list of shiny UI pages. The name of each entry in the UI page list corre-
sponds to its window title. No windows can be named *WindowSelector’, titles
must be uniquely named, and titles cannot have spaces.

a named list of functions that calculate variables derived from user input, to be
used in rendering output. Each function is of the form function(calc, session),
where calc is a named list containing the traditional Shiny input and user-created
reactive values, and session is the traditional Shiny server session value. All
calculated variables that are needed to render output should be added, named, to
the calc list. When using reactive functions such as observeEvent(), each should
be contained in a separate function, and variables dependent on these reactions
should be added to calc. Note that these functions follow all Shiny conventions
(reactive values must be accessed in a reactive context, etc.).

a named list of functions that render output. Each function is of the form func-
tion(calc, session), where calc is a named list containing the traditional Shiny
input and reactive values that have calculated values derived from input, and
session is the traditional Shiny server session value. It returns the results of a
Shiny render function. The name of each function corresponds to its output la-
bel. Note that these functions follow all Shiny conventions (reactive values must
be accessed in a reactive context, etc.).

.e., it runs the app)

if(interactive()){
Run a simple 2-window app, initially bringing up the window selector window:

ui_win <- list()

ui_win[["clickinput”"]] <- fluidPage(numericInput(inputld = "click"”, label = "a", value = 1))
ui_win[["clickoutput”]] <- fluidPage(plotOutput(”clickplot”))

serv_out <- list()

serv_out[["clickplot”]] <- function(calc, session){

renderPlot ({

mwsApp

plot(1:calc$click,1:calc$click)
b))
3

mwsApp(ui_win, list(), serv_out)

}

Index

mwsApp, 2

	mwsApp
	Index

